Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Virol ; 95(19): e0061521, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287037

RESUMO

The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid (CA) lattice is located downstream of the CA protein in many retroviral Gags. The HIV-1 Gag protein contains a stretch of 5 amino acid residues termed the "clasp motif," important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of HIV-1 and Mason-Pfizer monkey virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide a comparable function. The importance of the sequences spanning the CA-nucleocapsid (NC) cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study, we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant proteins in vitro and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant viruses in vivo. The mutants revealed major defects in virion assembly and release in HEK 293T and HeLa cells and even larger defects in infectivity. Our data identify the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient retroviral infection. IMPORTANCE The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short "clasp" motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.


Assuntos
Proteínas do Capsídeo/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , Vírion/metabolismo , Montagem de Vírus , Motivos de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Produtos do Gene gag/genética , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral
2.
Protein Sci ; 30(6): 1258-1263, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786913

RESUMO

Mason-Pfizer monkey virus protease (PR) was crystallized in complex with two pepstatin-based inhibitors in P1 space group. In both crystal structures, the extended flap loops that lock the inhibitor/substrate over the active site, are visible in the electron density either completely or with only small gaps, providing the first observation of the conformation of the flap loops in dimeric complex form of this retropepsin. The H-bond network in the active site (with D26N mutation) differs from that reported for the P21 crystal structures and is similar to a rarely occurring system in HIV-1 PR.


Assuntos
Vírus dos Macacos de Mason-Pfizer/enzimologia , Pepstatinas/química , Peptídeo Hidrolases/química , Inibidores de Proteases/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Substituição de Aminoácidos , Vírus dos Macacos de Mason-Pfizer/genética , Mutação de Sentido Incorreto , Peptídeo Hidrolases/genética , Estrutura Secundária de Proteína , Proteínas Virais/genética
3.
J Mol Biol ; 433(10): 166923, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713677

RESUMO

How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.


Assuntos
Produtos do Gene gag/química , Guanina/química , Vírus dos Macacos de Mason-Pfizer/química , RNA Viral/química , Uracila/química , Animais , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Viral da Expressão Gênica , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Guanina/metabolismo , Interações Hospedeiro-Patógeno , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/metabolismo , Conformação de Ácido Nucleico , Papio , Ligação Proteica , Conformação Proteica , Pegadas de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Uracila/metabolismo
4.
Biochemistry ; 59(46): 4429-4438, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166472

RESUMO

Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus dos Macacos de Mason-Pfizer/genética , RNA Viral/química , Eletroforese em Gel de Poliacrilamida Nativa , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Ribossomos/genética , Ribossomos/virologia
5.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796061

RESUMO

Retroviral envelope glycoprotein (Env) is essential for the specific recognition of the host cell and the initial phase of infection. As reported for human immunodeficiency virus (HIV), the recruitment of Env into a retroviral membrane envelope is mediated through its interaction with a Gag polyprotein precursor of structural proteins. This interaction, occurring between the matrix domain (MA) of Gag and the cytoplasmic tail (CT) of the transmembrane domain of Env, takes place at the host cell plasma membrane. To determine whether the MA of Mason-Pfizer monkey virus (M-PMV) also interacts directly with the CT of Env, we mimicked the in vivo conditions in an in vitro experiment by using a CT in its physiological trimeric conformation mediated by the trimerization motif of the GCN4 yeast transcription factor. The MA protein was used at the concentration shifting the equilibrium to its trimeric form. The direct interaction between MA and CT was confirmed by a pulldown assay. Through the combination of nuclear magnetic resonance (NMR) spectroscopy and protein cross-linking followed by mass spectrometry analysis, the residues involved in mutual interactions were determined. NMR has shown that the C terminus of the CT is bound to the C-terminal part of MA. In addition, protein cross-linking confirmed the close proximity of the N-terminal part of CT and the N terminus of MA, which is enabled in vivo by their location at the membrane. These results are in agreement with the previously determined orientation of MA on the membrane and support the already observed mechanisms of M-PMV virus-like particle transport and budding.IMPORTANCE By a combination of nuclear magnetic resonance (NMR) and mass spectroscopy of cross-linked peptides, we show that in contrast to human immunodeficiency virus type 1 (HIV-1), the C-terminal residues of the unstructured cytoplasmic tail of Mason-Pfizer monkey virus (M-PMV) Env interact with the matrix domain (MA). Based on biochemical data and molecular modeling, we propose that individual cytoplasmic tail (CT) monomers of a trimeric complex bind MA molecules belonging to different neighboring trimers, which may stabilize the MA orientation at the membrane by the formation of a membrane-bound net of interlinked Gag and CT trimers. This also corresponds with the concept that the membrane-bound MA of Gag recruits Env through interaction with the full-length CT, while CT truncation during maturation attenuates the interaction to facilitate uncoating. We propose a model suggesting different arrangements of MA-CT complexes between a D-type and C-type retroviruses with short and long CTs, respectively.


Assuntos
Produtos do Gene env/química , Produtos do Gene gag/química , Vírus dos Macacos de Mason-Pfizer/química , Produtos do Gene env/genética , Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/genética , Domínios Proteicos
6.
RNA Biol ; 16(5): 612-625, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773097

RESUMO

The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.


Assuntos
Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/fisiologia , RNA Viral/química , RNA Viral/genética , Regiões 5' não Traduzidas , Produtos do Gene gag/química , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA , Montagem de Vírus
7.
Viruses ; 10(10)2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347798

RESUMO

The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.


Assuntos
Produtos do Gene env/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vesículas Transportadoras/virologia , Animais , Membrana Celular/metabolismo , Membrana Celular/virologia , Endossomos/metabolismo , Endossomos/virologia , Produtos do Gene env/genética , Vírus dos Macacos de Mason-Pfizer/genética , Transporte Proteico , Vesículas Transportadoras/metabolismo , Montagem de Vírus
8.
Sci Rep ; 8(1): 11793, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087395

RESUMO

MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.


Assuntos
Expressão Gênica , Produtos do Gene gag/química , Produtos do Gene gag/isolamento & purificação , Vírus dos Macacos de Mason-Pfizer/química , Produtos do Gene gag/biossíntese , Produtos do Gene gag/genética , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
Virology ; 521: 108-117, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29906704

RESUMO

Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.


Assuntos
Proteínas do Capsídeo/genética , Cisteína/genética , Vírus dos Macacos de Mason-Pfizer/genética , Montagem de Vírus , Proteínas do Capsídeo/química , Linhagem Celular , Vetores Genéticos , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/fisiologia , Mutação , Provírus/genética , Vírion/fisiologia
10.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491167

RESUMO

In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.


Assuntos
Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/fisiologia , Proteínas do Nucleocapsídeo/genética , Transcrição Reversa/genética , Montagem de Vírus/genética , Sequência de Aminoácidos/genética , Linhagem Celular , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Mutação/genética , RNA Viral/genética , Dedos de Zinco/genética
11.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795446

RESUMO

Embryonic carcinoma (EC) cells are malignant counterparts of embryonic stem (ES) cells and serve as useful models for investigating cellular differentiation and human embryogenesis. Though the susceptibility of murine EC cells to retroviral infection has been extensively analyzed, few studies of retrovirus infection of human EC cells have been performed. We tested the susceptibility of human EC cells to transduction by retroviral vectors derived from three different retroviral genera. We show that human EC cells efficiently express reporter genes delivered by vectors based on human immunodeficiency virus type 1 (HIV-1) and Mason-Pfizer monkey virus (M-PMV) but not Moloney murine leukemia virus (MLV). In human EC cells, MLV integration occurs normally, but no viral gene expression is observed. The block to MLV expression of MLV genomes is relieved upon cellular differentiation. The lack of gene expression is correlated with transcriptional silencing of the MLV promoter through the deposition of repressive histone marks as well as DNA methylation. Moreover, depletion of SETDB1, a histone methyltransferase, resulted in a loss of transcriptional silencing and upregulation of MLV gene expression. Finally, we provide evidence showing that the lack of MLV gene expression may be attributed in part to the lack of MLV enhancer function in human EC cells. IMPORTANCE: Human embryonic carcinoma (EC) cells are shown to restrict the expression of murine leukemia virus genomes but not retroviral genomes of the lentiviral or betaretroviral families. The block occurs at the level of transcription and is accompanied by the deposition of repressive histone marks and methylation of the integrated proviral DNA. The host machinery required for silencing in human EC cells is distinct from that in murine EC cell lines: the histone methyltransferase SETDB1 is required, but the widely utilized corepressor TRIM28/Kap1 is not. A transcriptional enhancer element from the Mason-Pfizer monkey virus can override the silencing and promote transcription of chimeric proviral DNAs. The findings reveal novel features of human EC gene regulation not present in their murine counterparts.


Assuntos
Inativação Gênica , Genoma Viral , HIV-1/genética , Células-Tronco Embrionárias Humanas/imunologia , Vírus dos Macacos de Mason-Pfizer/genética , Vírus da Leucemia Murina de Moloney/genética , Células-Tronco Neoplásicas/imunologia , Animais , Diferenciação Celular , Metilação de DNA , Genes Reporter , HIV-1/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/genética , Histonas/imunologia , Especificidade de Hospedeiro , Células-Tronco Embrionárias Humanas/virologia , Humanos , Vírus dos Macacos de Mason-Pfizer/metabolismo , Camundongos , Vírus da Leucemia Murina de Moloney/metabolismo , Células-Tronco Neoplásicas/virologia , Regiões Promotoras Genéticas , Proteínas Metiltransferases/antagonistas & inibidores , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Especificidade da Espécie , Transcrição Gênica
12.
RNA ; 22(6): 905-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27095024

RESUMO

MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses.


Assuntos
Genes gag , Vírus dos Macacos de Mason-Pfizer/genética , RNA Viral/genética , Montagem de Vírus
13.
Retrovirology ; 11: 94, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25365920

RESUMO

BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a ß-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the ß-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the ß-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal ß-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the ß-hairpin in mature M-PMV CA.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus dos Macacos de Mason-Pfizer/metabolismo , Estrutura Secundária de Proteína/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Dados de Sequência Molecular , Mutação/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética
14.
Retrovirology ; 11: 73, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25212909

RESUMO

BACKGROUND: All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. RESULTS: The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag-only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. CONCLUSION: These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.


Assuntos
Gammaretrovirus/genética , Produtos do Gene gag/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Polirribossomos/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Linhagem Celular , Citoplasma/genética , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Deleção de Sequência
15.
PLoS One ; 9(9): e106151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187981

RESUMO

The assembly and release of retroviruses from the host cells requires a coordinated series of interactions between viral structural proteins and cellular trafficking pathways. Although a number of cellular factors involved in retrovirus assembly have been identified, it is likely that retroviruses utilize additional trafficking factors to expedite their assembly and budding that have not yet been defined. We performed a screen using an siRNA library targeting host membrane trafficking genes in order to identify new host factors that contribute to retrovirus assembly or release. We utilized two retroviruses that follow very distinct assembly pathways, HIV-1 and Mason-Pfizer monkey virus (M-PMV) in order to identify host pathways that are generally applicable in retrovirus assembly versus those that are unique to HIV or M-PMV. Here we report the identification of 24 host proteins identified in the screen and subsequently validated in follow-up experiments as contributors to the assembly or release of both viruses. In addition to identifying a number of previously unsuspected individual trafficking factors, we noted multiple hits among proteins involved in modulation of the actin cytoskeleton, clathrin-mediated transport pathways, and phosphoinositide metabolism. Our study shows that distant genera of retroviruses share a number of common interaction strategies with host cell trafficking machinery, and identifies new cellular factors involved in the late stages of retroviral replication.


Assuntos
HIV-1/fisiologia , Vírus dos Macacos de Mason-Pfizer/fisiologia , RNA Interferente Pequeno/genética , Montagem de Vírus/fisiologia , Linhagem Celular , Biologia Computacional , HIV-1/genética , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Montagem de Vírus/genética
16.
Protein Expr Purif ; 99: 6-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24662511

RESUMO

Nuclear magnetic resonance (NMR) is a powerful technique for solving protein structures or studying their interactions. However, it requires molecules labeled with NMR sensitive isotopes like carbon (13)C and nitrogen (15)N. The recombinant expression of labeled proteins is simple to perform but requires quite expensive chemicals. When there is a need for special labeled chemicals, like uniformly (13)C-labeled myristic acid, the price significantly rises. Here we describe a cost-effective method for the recombinant expression of uniformly labeled myristoylated proteins in Escherichia coli demonstrated on the production of Mason-Pfizer monkey virus matrix protein. We used the ability of E. coli to naturally synthetize myristic acid. When grown in isotopically labeled medium the myristic acid will be labelled as well. Bacteria were co-transfected with plasmid carrying gene for yeast N-myristoyltransferase which ensures myristoylation of expressed protein. This process provided 1.8mg of the myristoylated, doubly labeled ((13)C/(15)N)M-PMV matrix protein from 1L of (15)N/(13)C labeled M9 medium. The price represents approximately 50% cost reduction of conventional method using commercially available [U-(13)C]myristic acid.


Assuntos
Escherichia coli/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/metabolismo , Isótopos de Carbono , Escherichia coli/genética , Marcação por Isótopo/economia , Marcação por Isótopo/métodos , Vírus dos Macacos de Mason-Pfizer/genética , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Transfecção , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação
17.
J Gen Virol ; 95(Pt 6): 1383-1389, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659101

RESUMO

We identified breast cancer-associated protein (BCA3) as a novel binding partner of Mason-Pfizer monkey virus (MPMV) protease (PR). The interaction was confirmed by co-immunoprecipitation and immunocolocalization of MPMV PR and BCA3. Full-length but not C-terminally truncated BCA3 was incorporated into MPMV virions. We ruled out the potential role of the G-patch domain, a glycine-rich domain located at the C terminus of MPMV PR, in BCA3 interaction and virion incorporation. Expression of BCA3 did not affect MPMV particle release and proteolytic processing; however, it slightly increased MPMV infectivity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endopeptidases/metabolismo , Vírus dos Macacos de Mason-Pfizer/enzimologia , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Endopeptidases/química , Endopeptidases/genética , Feminino , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
18.
Virology ; 449: 109-19, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418544

RESUMO

The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles.


Assuntos
Produtos do Gene env/metabolismo , Produtos do Gene gag/metabolismo , Vírus dos Macacos de Mason-Pfizer/metabolismo , Microtúbulos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , Membrana Celular/virologia , Chlorocebus aethiops , Produtos do Gene env/genética , Produtos do Gene gag/genética , Macaca mulatta , Vírus dos Macacos de Mason-Pfizer/genética , Microtúbulos/metabolismo , Transporte Proteico , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo
19.
Arch Virol ; 159(4): 677-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24132720

RESUMO

Retroviral gag proteins, as well as fragments minimally containing the capsid (CA) and nucleocapsid (NC) subunits of Gag, are able to spontaneously assemble into virus-like particles (VLPs). This occurs in mammalian and bacterial cells as well as in in vitro systems. In every circumstance, nucleic acids are incorporated into the forming particles. Here, we took advantage of an in vitro system for the generation of non-enveloped Mason-Pfizer monkey virus (M-PMV) VLPs derived from a self-assembling CA-NC subunit of Gag. These VLPs were modified through N-terminal extension of CA-NC with short oligopeptides that, after the assembly process, were exposed on the surface of VLPs. The employed N-terminal modifications allowed specific interaction with target cells expressing prostate-specific membrane antigen. Using this system, we were able to incorporate selected siRNA into forming VLPs and deliver it into the cytosol of target cells. In comparison with other viral vectors designed for targeted transgene delivery, this M-PMV VLP system represents the lowest risk of generating virus-associated pathology, as the VLPs do not contain any viral coding sequences and are formed in a cell-free system.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Substâncias Macromoleculares/metabolismo , Vírus dos Macacos de Mason-Pfizer/genética , Transdução Genética , Virossomos/genética , Virossomos/metabolismo , Ligação Viral , Linhagem Celular , Humanos , RNA Interferente Pequeno/metabolismo
20.
RNA ; 19(12): 1648-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152551

RESUMO

Earlier genetic and structural prediction analyses revealed that the packaging determinants of Mason Pfizer monkey virus (MPMV) include two discontinuous core regions at the 5' end of its genomic RNA. RNA secondary structure predictions suggested that these packaging determinants fold into several stem-loops (SLs). To experimentally validate this structural model, we employed selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), which examines the flexibility of the RNA backbone at each nucleotide position. Our SHAPE data validated several predicted structural motifs, including U5/Gag long-range interactions (LRIs), a stretch of single-stranded purine (ssPurine)-rich region, and a distinctive G-C-rich palindromic (pal) SL. Minimum free-energy structure predictions, phylogenetic, and in silico modeling analyses of different MPMV strains revealed that the U5 and gag sequences involved in the LRIs differ minimally within strains and maintain a very high degree of complementarity. Since the pal SL forms a helix loop containing a canonical "GC" dyad, it may act as a RNA dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Analyses of wild-type and pal mutant RNAs revealed that disruption of pal sequence strongly affected RNA dimerization. However, when in vitro transcribed trans-complementary pal mutants were incubated together showed RNA dimerization was restored authenticating that the pal loop (5'-CGGCCG-3') functions as DIS.


Assuntos
Dimerização , Vírus dos Macacos de Mason-Pfizer/genética , RNA Viral/química , Acilação , Sequência de Bases , Sequência Conservada , Primers do DNA/química , Genoma Viral , Sequências Repetidas Invertidas , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sítios de Splice de RNA , RNA Viral/genética , Termodinâmica , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...